Free Energy Lemon, Orange or Potato Battery

A lemon battery is a simple battery often made for the purpose of education. Typically, a piece of zinc metal (such as a galvanized nail) and a piece of copper (such as a penny) are inserted into a lemon.
The lemon battery is similar to the first electrical battery invented in 1800 by Alessandro Volta, who used brine (salt water) instead of lemon juice. The lemon battery is described in some textbooks in order to illustrate the type of chemical reaction (oxidation-reduction) that occurs in batteries. The zinc and copper are called the electrodes, and the juice inside the lemon is called the electrolyte. There are many variations of the lemon cell that use different fruits (or liquids) as electrolytes and metals other than zinc and copper as electrodes.
There are numerous sets of instructions for making lemon batteries and for obtaining components such as light-emitting diodes (LEDs), electrical meters (multimeters), and zinc-coated (galvanized) nails and screws. Commercial “potato clock” science kits include electrodes and a low-voltage digital clock. After one cell is assembled, a multimeter can be used to measure the voltage or the electrical current from the voltaic cell; a typical voltage is 0.9 V with lemons. Currents are more variable, but range up to about 1 mA. For a more visible effect, lemon cells can be connected in series to power an LED (see illustration) or other devices. The series connection increases the voltage available to devices. Swartling and Morgan have published a list of low-voltage devices along with the corresponding number of lemon cells that were needed to power them; they included LEDs, piezeoelectric buzzers, and small digital clocks. With the zinc/copper electrodes, at least two lemon cells were needed for any of these devices. Substituting a magnesium electrode for the zinc electrode makes a cell with a larger voltage (1.5−1.6 V), and a single magnesium/copper cell will power some devices. Note that incandescent light bulbs from flashlights are not used because the lemon battery is not designed to produce enough electrical current to light them. By multiplying the average current of a lemon (0.001A/ 1mA) by the average (lowest) voltage (potential difference) of a lemon (0.7V) we can conclude that it would take approximately 6,171,430 lemons to give us the power of an average 4320W car battery.

Continue reading “Free Energy Lemon, Orange or Potato Battery”

CNC Computer numerical controlled Lathe and Swiss-style Lathe

Computer numerical controlled (CNC) lathes are rapidly replacing the older production lathes (multispindle, etc.) due to their ease of setting, operation, repeatability and accuracy. They are designed to use modern carbide tooling and fully use modern processes. The part may be designed and the tool paths programmed by the CAD/CAM process or manually by the programmer, and the resulting file uploaded to the machine, and once set and trialled the machine will continue to turn out parts under the occasional supervision of an operator.
The machine is controlled electronically via a computer menu style interface, the program may be modified and displayed at the machine, along with a simulated view of the process. The setter/operator needs a high level of skill to perform the process, however the knowledge base is broader compared to the older production machines where intimate knowledge of each machine was considered essential. These machines are often set and operated by the same person, where the operator will supervise a small number of machines (cell). Continue reading “CNC Computer numerical controlled Lathe and Swiss-style Lathe”

Metal Lathe or Metalworking Lathe

A metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to machine metals; however, with the advent of plastics and other materials, and with their inherent versatility, they are used in a wide range of applications, and a broad range of materials. In machining jargon, where the larger context is already understood, they are usually simply called lathes, or else referred to by more-specific subtype names (toolroom lathe, turret lathe, etc.). These rigid machine tools remove material from a rotating workpiece via the (typically linear) movements of various cutting tools, such as tool bits and drill bits.
The design of lathes can vary greatly depending on the intended application; however, basic features are common to most types. These machines consist of (at the least) a headstock, bed, carriage, and tailstock. Better machines are solidly constructed with broad bearing surfaces (slide-ways) for stability, and manufactured with great precision. This helps ensure the components manufactured on the machines can meet the required tolerances and repeatability. Continue reading “Metal Lathe or Metalworking Lathe”

Lathe Machine Heavy Duty Manufacturer

A lathe is a machine tool which rotates the workpiece on its axis to perform various operations such as cutting, sanding, knurling, drilling, or deformation, facing, turning, with tools that are applied to the workpiece to create an object which has symmetry about an axis of rotation.
Lathes are used in woodturning, metalworking, metal spinning, thermal spraying, parts reclamation, and glass-working. Lathes can be used to shape pottery, the best-known design being the potter’s wheel. Most suitably equipped metalworking lathes can also be used to produce most solids of revolution, plane surfaces and screw threads or helices. Ornamental lathes can produce three-dimensional solids of incredible complexity. The workpiece is usually held in place by either one or two centers, at least one of which can typically be moved horizontally to accommodate varying workpiece lengths. Other work-holding methods include clamping the work about the axis of rotation using a chuck or collet, or to a faceplate, using clamps or dogs.

Continue reading “Lathe Machine Heavy Duty Manufacturer”

Telescope view of the universe

A telescope is an instrument that aids in the observation of remote objects by collecting electromagnetic radiation (such as visible light). The first known practical telescopes were invented in the Netherlands at the beginning of the 17th century, using glass lenses. They found use in terrestrial applications and astronomy.
Within a few decades, the reflecting telescope was invented, which used mirrors. In the 20th century many new types of telescopes were invented, including radio telescopes in the 1930s and infrared telescopes in the 1960s. The word telescope now refers to a wide range of instruments detecting different regions of the electromagnetic spectrum, and in some cases other types of detectors.
The earliest recorded working telescopes were the refracting telescopes that appeared in the Netherlands in 1608. Their development is credited to three individuals: Hans Lippershey and Zacharias Janssen, who were spectacle makers in Middelburg, and Jacob Metius of Alkmaar. Galileo heard about the Dutch telescope in June 1609, built his own within a month, and improved upon the design in the following year.

Continue reading “Telescope view of the universe”

Joule thief or not joule thief that is the question

A joule thief is a minimalist Armstrong self-oscillating voltage booster that is small, low-cost, and easy to build; typically used for driving light loads. It can use nearly all of the energy in a single-cell electric battery, even far below the voltage where other circuits consider the battery fully discharged (or “dead”). Hence the name, which suggests the notion that the circuit is stealing energy or “joules” from the source. The term is a pun on the expression “jewel thief”: one who steals jewelry or gemstones.
The circuit uses the self-oscillating properties of the blocking oscillator, to form an unregulated voltage boost converter. The output voltage is increased at the expense of higher current draw on the input.
In the “Ingenuity Unlimited” section (readers’ ideas) of the November 1999 issue of Everyday Practical Electronics (EPE), page 804, Z. Kaparnik from Swindon published a simple circuit entitled “Micro-torch Circuit”. The circuit consisted of a transformer-feedback single-transistor voltage converter based on the blocking oscillator, which originally used a vacuum tube / thermionic valve and dates prior to World War II. The name “Joule Thief” was coined by Clive Mitchell and given to his variant of Kaparnik’s circuit which consisted of a single cell, a single BC549 NPN transistor, a coil with two windings, a single resistor (typically 1000 ohms), and a single white LED. The name caught on, became popular, and since then others have borrowed the Joule Thief name and applied it to other circuits[citation needed]. However, those circuits are not true Joule Thief circuits.

Continue reading “Joule thief or not joule thief that is the question”

Solar Power – Free Energy Generator

Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). Concentrated solar power systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Photovoltaics convert light into electric current using the photovoltaic effect.
Photovoltaics were initially, and still are, used to power small and medium-sized applications, from the calculator powered by a single solar cell to off-grid homes powered by a photovoltaic array. They are an important and relatively inexpensive source of electrical energy where grid power is inconvenient, unreasonably expensive to connect, or simply unavailable. However, as the cost of solar electricity is falling, solar power is also increasingly being used even in grid-connected situations as a way to feed low-carbon energy into the grid.
Commercial concentrated solar power plants were first developed in the 1980s. The 392 MW Ivanpah installation is the largest concentrating solar power plant in the world, located in the Mojave Desert of California. Other large CSP plants include the SEGS (354 MW) in the Mojave Desert of California, the Solnova Solar Power Station (150 MW) and the Andasol solar power station (150 MW), both in Spain. The two 550 MW solar farms, Topaz Solar Farm and Desert Sunlight Solar Farm in the United States, are the world’s largest photovoltaic power stations.

Continue reading “Solar Power – Free Energy Generator”

Homemade HTPC – Turn a Raspberry Pi Into an XBMC Media Center

The best home theater PCs are small, quiet, and inexpensive—so the bite-size, $35 Raspberry Pi is the perfect choice. Here’s how to turn this little DIY board into a cheap, silent media center in just a half hour.
Check out the video above for a quick demo of what the project entails, and what you’ll get at the end. Music in the video by Revolution Void.
It’s Raspberry Pi week at Lifehacker, and all week we’ll be showing you some cool DIY projects you can put together with this little miracle of a device. If you haven’t bought one yet, check out our introduction to the Pi to learn more about what it is, what you’ll need, and the cool stuff you can do with one. If you aren’t familiar with XBMC, our favorite media center software, check out our complete guide to creating a kickass play-everything media center for more info (then come back here).

Continue reading “Homemade HTPC – Turn a Raspberry Pi Into an XBMC Media Center”

Raspberry Pi – New mini PC for Children

The Raspberry Pi is a series of credit card-sized single-board computers developed in the UK by the Raspberry Pi Foundation with the intention of promoting the teaching of basic computer science in schools.
The original Raspberry Pi and Raspberry Pi 2 are manufactured in several board configurations through licensed manufacturing agreements with Newark element14 (Premier Farnell), RS Components and Egoman. These companies sell the Raspberry Pi online. Egoman produces a version for distribution solely in China and Taiwan, which can be distinguished from other Pis by their red colouring and lack of FCC/CE marks. The hardware is the same across all manufacturers. Continue reading “Raspberry Pi – New mini PC for Children”